A REVIEW ON APPLICATION OF POLYMER OPTICAL FIBER SENSORS

  • Dr. C Saravanan

Abstract

Polymer optical fibers (POFs) have significant advantages for many sensing applications, including high elastic strain limits, high fracture toughness, high flexibility in bending, high sensitivity to strain and potential negative thermo-optic coefficients. The recent emergence of single-mode POFs has enabled high precision, large deformation optical fiber sensors. This article describes recent advances in both multi-mode and single-mode POF based strain and temperature sensors. The mechanical and optical properties of POFs relevant to strain and temperature applications are summarized in this study. POFs considered include multi-mode POFs, solid core single-mode POFs and microstructured single-mode POFs. Practical methods for applying POF sensors, including connecting and embedding sensors in structural materials, are also described. Recent demonstrations of multi-mode POF sensors in structural applications based on new interrogation methods, including backscattering and time-of-flight measurements, are outlined. The phase–displacement relation of a single-mode POF undergoing large deformation is presented to build a fundamental understanding of the response of single-mode POF sensors. Finally, this article highlights recent single-mode POF based sensors based on polymer fiber Bragg gratings and microstructured POFs.

Published
2019-11-30
Section
Articles