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ABSTRACT: Operational learning is about gaining deeper operational intelligence about how work actually 

is completed. Goal-oriented approaches are becoming increasingly popular as a means of gathering, 

developing, analysing, and defining software requirements. The development of a proper and comprehensive 

set of operational criteria, in the form of pre- and trigger-conditions that ensure the system goals is a 

fundamental task in these methods. Few existing techniques assist this critical activity and rely mostly on the 

engineer's considerable effort and skill. An operational definition offered in this paper posits learning as a 

multi-dimensional and multi-phase phenomenon occurring when individuals attempt to solve what they view 

as a problem. To model someone is learning accordingly to the definition, it suffices to characterize a particular 

sequence of that person's disequilibrium–equilibrium phases in terms of products of a particular mental act, 

the characteristics of the mental act inferred from the products, and intellectual and psychological needs that 

instigate or result from these phases.  
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1. INTRODUCTION 

Learning conceptual concepts successfully transmit signals about many theoretical viewpoints 

on learning, but they lack operability. Many commonly used in mathematics education 

discourse conceptualizations of learning, such as learning as acquisition, learning as 

participation, learning as problem solving, or learning as assimilation and accommodation, 

refer to the key processes involved but fall short of operationally capturing the essence of the 

intended change[1]. 

The machine-learning algorithm in the simultaneous process includes a regularisation term that 

encodes the policy and its associated cost and has an adjustable regularisation parameter. If the 

cost of solving the problem is uncertain, the regularisation parameter can be swept through an 

interval to find a range of possible costs, from optimistic to pessimistic[2]. 

After that, the method generates the most likely scenario for each cost value. We can sweep 

out costs for all reasonable probabilistic models by looking at the full range of the regularisation 

parameter. This range can be used to determine how much money should be set aside to solve 

the problem. With the full range of costs for reasonable models, the first paragraph's question 

about allocation, "What is a reasonable amount to allocate for this task so we can react best to 

whatever nature brings?" can be directly answered[3]. For example, one could allocate the 

maximum cost to the set of reasonable predictive models. “Can we produce a reasonable 

probabilistic model, supported by data, where we might expect to pay a specific amount?” is 

the second question. This is an important question because business managers frequently want 

to know if the data supports a particular scenario/decision pair[4]. 

RE (Required Engineering) is an important component of the software development life cycle, 

and it deals with the elicitation, elaboration, specification, analysis, and documenting of a 

system's goals. Each of these processes leads to the creation of a full and accurate software 

requirements specification that meets the system's objectives. Many goal-based approaches 

have been developed to aid in the collection of requirements, but few have focused on the 

derivation of operational needs from high-level objectives[5]. Operationalization patterns that 
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enable the derivation of operational requirements in the form of pre- and trigger-conditions 

from Linear Temporal Logic goals (LTL). This method generates requirements that are 

guaranteed to be correct. Patterns, on the other hand, are limited to a set of goal and requirement 

templates, and their use necessitates a fully developed goal model. As a result, elaborating 

operational needs from goals is limited to a collection of templates, which can be time-

consuming and error-prone. As a result, the availability of a more systematic and automated 

approach would benefit the goal-setting process[6]. 

The data usually disclose the result, the effective solution to the new challenge, in a strategy 

that focuses on fostering disruption. There may be little or no data on the learning (changing) 

process since the student was previously unable to generate a solution of this type and is now 

able to. In our method, the researchers utilise a series of activities to elicit specific action from 

the students that promotes the desired learning. The researchers will be able to watch the 

students' activities throughout the task sequence if the task sequence is effective[7]. 

We present what we term the simultaneous process, in which we examine a range of predictive 

models and associated policy decisions at the same time in order to transmit the uncertainty in 

modelling to the uncertainty in costs. The simultaneous process was named to contrast with a 

more traditional sequential process, in which data is first input into a statistical algorithm to 

produce a predictive model that makes future recommendations, and then the user develops a 

plan of action and estimated costs for implementing the policy. Even though there may be a 

complete class of models that might be applicable for the policy decision problem, the 

sequential approach is usually employed in reality. The sequential process is based on the 

assumption that the probability is "accurate enough" to make a "near enough" conclusion[8]. 

This approach may be used to a variety of situations. Predictions based on a statistical model 

of the number of patients, for example, may be used to determine the possible policies and 

costs for staffing in a medical clinic. Predictions based on a model of the expected traffic may 

be beneficial in defining load-balancing rules on the network and their related costs in traffic 

flow difficulties. Predictions based on payback and ad-click rate models may be utilised in 

online advertising to determine regulations for when the ad should be displayed and the related 

income[9]. 

1.1 Operational and environmental variability: 

Non-stationary sources of variability in the observed dynamic response of structures can be 

linked to operational and environmental factors. Live loads (for example, traffic loads on 

bridges), speed of operation, and changing excitation sources are all examples of varying 

operating circumstances. Thermal impacts, wind loading, and moisture content are all 

examples of varying environmental circumstances[10]. 

Many researchers have looked at the impact of traffic loads on bridge modal characteristics. 

Heavy traffic reduced the observed natural frequencies of a 46-m long simply supported plate 

girder by 5.4 percent, discovered 10 percent fluctuations in the first natural frequency in a box-

girder concrete bridge. The scientists ascribed the large fluctuations to changes in the bridge's 

mass because of traffic and environmental factors. Following further study, it was discovered 

that the cars changed the overall mass of the bridge by 10% and the modal frequency of the 

bridge by 5%. 

These changes were associated with surface temperature differentials across the deck at the 

moment and one year later, but not with absolute air temperature. In a 2008 research, the 
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authors discovered an asymmetrical variation in the first mode shape that changed during the 

day in one simply supported span at the end of the same bridge. 

The time of day and accompanying solar heating were linked to the asymmetry along the 

longitudinal axis. Because of the bridge's north–south direction, these thermal impacts were 

more prominent. Such variations in the dynamical response characteristics, if not adequately 

accounted for, might lead to misleading signals of damage. A classification system would 

identify the mode in Figure 1(a) was regarded the baseline condition and in Figure 1(b) as an 

outlier if the mode. If the environmental variability associated with this characteristic was not 

taken into consideration in the outlier detection procedure, this outlier might be incorrectly 

classified as damaged. 

 

Figure 1: The above figure shows the shape of supported span (a) in the morning, (b) in 

the afternoon. 

1.2 Machine learning algorithms: 

Several techniques for data normalisation have been published in the literature. Because they 

are created and developed in such a way that their performance is enhanced based on the 

analysis of normal operating data (i.e., they "learn" from the normal condition data), these 

methods are also known as machine learning algorithms. 

Briefly, these algorithms provide a functional connection that predicts how changing 

operational and environmental variables affect the underlying distribution of damage-sensitive 

characteristics. Because the varying operational and environmental conditions have been 

incorporated into the classifier, when subsequent features are analysed with these algorithms 

and the new set of features is shown not to fit into an appropriate distribution, they may be 

more confidently classified as outliers or, potentially, features from a damaged structure.  

Even though the underlying mathematical formulations of these algorithms differ, they are all 

implemented in the same way: first, each algorithm is trained and its parameters are adjusted 

using feature vectors extracted from time-series data collected under various operational and 

environmental conditions. Second, all machine learning algorithms will transform each input 

feature vector during the test phase; it should be nearly invariant for feature vectors extracted 

from the normal condition, assuming the test data was obtained from operational and 

environmental conditions represented in the training data. 

After that, a one criterion for a particular degree of significance is used to classify the data. 

When feature vectors come from the damaged state, even if they include operational and 

environmental variability, should be labelled as outliers if robust data normalisation has been 

performed. It is worth noting that a feature vector reflects a property of the system at a certain 

point in time. The modal parameters have traditionally been utilised in civil engineering as 

characteristics that define the structure's overall state. 
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The AR model is employed to extract damage-sensitive features in this work because the 

underlying linear stationary assumption allows for the detection of nonlinearities in the time-

series. The notion is that the estimated parameters should fluctuate between intervals in a 

system where distinct dynamics are present at various times. 

The AR models have been used in SHM to extract damage-sensitive features from time-series 

data, using either the model parameters or residual errors. For a measured time-series s1,s2, ... 

,sN the AR (p) model of order p is given by: 

𝑠𝑖 = ∑ ɸ𝑗𝑆𝑖−𝑗 +  𝑒𝑖

𝑝

𝑗=1

 

Where si is the measured signal and ei an unobservable random error at discrete time index i. 

The unknown AR parameters, ɸj, can be estimated using the least squares. The order of the 

model is always an unknown integer that needs to be estimated from the data. The Akaike 

information criterion (AIC) has been reported as one of the most efficient techniques for order 

optimization. The AIC is a measure of the goodness-of-fit of an estimated statistical model that 

is based on the trade-off between fitting accuracy and number of estimated parameters. In the 

context of AR models: 

𝐴𝐼𝐶 = 𝑁𝑡 𝑙𝑛(𝜀) + 2𝑁𝑝 

Where Np is the number of estimated parameters, Nt the number of predicted data points, and 

ε = SSR/Nt the average sum-of-square residual (SSR) errors. The AR model with the lowest 

AIC value gives the optimal order p. 

1.3 Auto-associative neural network: 

AANN is trained to describe the underlying dependency of the detected characteristics on 

unobserved operational and environmental parameters (e.g., traffic loads and temperature). The 

mapping layer, the bottleneck layer, and the de-mapping layer are all hidden layers in the 

AANN architecture. The references provide more information about the network, including the 

number of nodes to utilise. 

1.4 Simultaneous Process in the Context of Structural Risk Minimization: 

When dealing with finite data sets, there is often, no one right statistical model; in fact, there 

may be a whole class of good models. Furthermore, a small change in the predictive model 

chosen could result in a large change in the cost of implementing the policy recommended by 

the model. This happens, for example, when costs are based on items that come in discrete 

quantities. Figure 2 illustrates this possibility by demonstrating that the class of good models 

can have a wide range of costs. The simultaneous process can determine the cost range for a 

set of good models that can be used for cost allocation. 
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Figure 2: In all three plots, the x-axis represents model classes with increasing 

complexity. a) Relationship between training error and test error as a function of model 

complexity. b) A possible operational cost as a function of model complexity. c) Another 

possible operational cost. 

2. DISCUSSION 

The author has discussed about the operational defined learning, the learning conceptual 

concepts successfully transmit signals about many theoretical viewpoints on learning, but they 

lack operability. The definition also addresses the question of why the changes occurred by 

focusing on the reciprocity between ways of understanding and ways of thinking, as well as 

the intellectual and psychological needs that drive the initial involvement in a problematic 

situation and the pursuit of it in a specific manner. For example, the following explanation 

shows how and why Burt was finally capable of performing the interview problem 

independently by repeated reasoning about it. In general, the identified combination of 

psychological and intellectual needs plausibly explained how the interview task required Burt 

to examine his experience as a mathematics teacher and gradually shift from naively adapting 

the available word problem contexts to making subtle observations about the essence of 

fraction division over a long period. Many commonly used in mathematics education discourse 

conceptualizations of learning, such as learning as acquisition, learning as participation, 

learning as problem solving, or learning as assimilation and accommodation, refer to the key 



   
  

 
 

ISSN: 0374-8588  
Volume 22 Issue 1, January 2020  

__________________________________________________________________________________ 

1415 
 

processes involved but fall short of operationally capturing the essence of the intended change. 

The machine-learning algorithm in the simultaneous process includes a regularisation term that 

encodes the policy and its associated cost and has an adjustable regularisation parameter. If the 

cost of solving the problem is uncertain, the regularisation parameter can be swept through an 

interval to find a range of possible costs, from optimistic to pessimistic. Because the varying 

operational and environmental conditions have been incorporated into the classifier, when 

subsequent features are analysed with these algorithms.  

Operational learning is about gaining deeper operational intelligence about how work actually 

is completed. Goal-oriented approaches are becoming increasingly popular as a means of 

gathering, developing, analysing, and defining software requirements. The development of a 

proper and comprehensive set of operational criteria, in the form of pre- and trigger-conditions 

that ensure the system goals is a fundamental task in these methods. Few existing techniques 

assist this critical activity and rely mostly on the engineer's considerable effort and skill. An 

operational definition offered in this paper posits learning as a multi-dimensional and multi-

phase phenomenon occurring when individuals attempt to solve what they view as a problem. 

Several techniques for data normalisation have been published in the literature. Because they 

are created and developed in such a way that their performance is enhanced based on the 

analysis of normal operating data. Second, all machine learning algorithms will transform each 

input feature vector during the test phase; it should be nearly invariant for feature vectors 

extracted from the normal condition, assuming the test data was obtained from operational and 

environmental conditions represented in the training data. When there are several potentially 

excellent probabilistic models, the simultaneous process yields a huge number of (optimal-

response) policies. This occurs when training data is limited, the problem's dimensionality is 

high in comparison to the sample size, and the operating cost is uneven. These requirements 

are simple to meet and occur often.  

3. CONCLUSION 

The author has concluded about the operational defined learning, the simultaneous process is 

useful in cases where there are many potentially good probabilistic models, yielding a large 

number of (optimal-response) policies. This happens when the training data are scarce, or the 

dimensionality of the problem is large compared to the sample size, and the operational cost is 

not smooth. These conditions are not difficult to satisfy, and do occur commonly. For instance, 

data can be scarce (relative to the number of features) when they are expensive to collect, or 

when each instance represents a real-world entity where few exist; for instance, each example 

might be a product, customer, purchase record, or historic event. The shortcomings, which are 

beyond the scope of this already extensive article, may be explained, once again, in terms of 

the instructors' psychological and intellectual requirements, as well as the absence of some 

especially beneficial methods of knowing and thinking throughout the interviews.  

When there are several potentially excellent probabilistic models, the simultaneous process 

yields a huge number of (optimal-response) policies. This occurs when training data is limited, 

the problem's dimensionality is high in comparison to the sample size, and the operating cost 

is uneven. These requirements are simple to meet and occur often. Operational cost calculations 

commonly involve discrete optimization; there can be many scheduling, knapsack, routing, 

constraint-satisfaction, facility location, and matching problems, well beyond what we 

considered in our simple examples. The simultaneous process can be used in cases where the 

optimization problem is difficult enough that sampling the posterior of Bayesian models, with 

computing the policy at each round, is not feasible. The author had end the paper by discussing 

the applicability of our policy-oriented estimation strategy in the real world. Prediction is the 
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end goal for machine learning problems in vision, image processing and biology, and in other 

scientific domains, but there are many domains where the learning algorithm is used to make 

recommendations for a subsequent task.  
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