
  

 

 

ISSN: 0374-8588 

Volume 21 Issue 8, August 2019 

______________________________________________________________________________ 
 
 

1614 
 

FEATURES OF SOFTWARE 

DEVELOPMENT LIFE CYCLE 
 

Mr. Santhosh. S 

Faculty of Engineering and Technology 

 Jain (Deemed-to-be University),  Ramnagar District, Karnataka - 562112 

Email Id: s.santhosh@jainuniversity.ac.in 
 

 

Abstract 

 

The Life Cycle (SDLC) software development programmes vary significantly in scale and the 

forms. And. This has contributed to the growth and development of several SDLC Templates 

projects technological and consistency. Its risk and control is a field that depends on 

conjecture. The specifications of (SDLC) are the security phases maximum value for mixture 

yields. This article attempted to connect the danger of software and software to the individual 

strings. The individual strings. The method will assist in selecting the most relevant proposals 

for risk assessment to offer machine protection. 

 

Keywords: Development, Language, Software Development Life Cycle, Specification, 

Testing. 

_________________________________________________________________________ 

 

I. INTRODUCTION 
 

The SDLC is a language used to describe how software is presented to clients in a sequence of 

phases. The app takes these steps from creation to execution. Since the first machines, and their 

controllers, there has been the career of software engineers since the days of ENIAC and 

vacuum [1]. Over the decades after the invention of the computer, software development 

techniques and strategies have evolved. These approaches have been tailored to the state-of-

the-art computing hardware, programming tools and the way software development teams 

organizationally manage [2]. As a result, innovative software creation techniques have emerged 

from attempts to improve public and private software around the world. These techniques differ 

extensively but share a similar objective: to create applications at the lowest possible cost and 

effectively. Software is a dynamic and multi-step product that has been developed and 

distributed [3].  

 

There is something that all diverse approaches share in common: software, like all things, 

begins with a concept in one way or another. Depending on the process used, the idea becomes 



  

 

 

ISSN: 0374-8588 

Volume 21 Issue 8, August 2019 

______________________________________________________________________________ 
 
 

1615 
 

a text or even a prototype. Whether a text, diagram or software, the generated artefact would 

be the next step [4]. The client is finally provided with the software. The series of steps 

employed in these approaches is generally considered the life cycle of software creation 

(SDLC.) The creation process of apps is an infinite loop. The first version of a software 

programme is never "finished." Additional characteristics and bug fixes pending design, 

implementation and launch almost still remain. Features and feature enhancements in the latest 

features are restored to the phase of product creation through error reporting software 

notifications on compatibility and glitches [5]. This is why the Life Cycle Software Creation is 

the most common concept for software approaches. The procedure steps and order differ 

according to the system. No matter what process, usually they start with each iteration and run 

in loops [6]. 

 

A complicated team activity like the development of software without any form of strategy is 

very difficult to carry out. Every software development approach is a plan system for designing 

software (several of which are detailed below). There has been much speculation on the right 

approach in general and how to evaluate performance in software development. However, one 

thing is certain: any scheme is better than no scheme. Software development teams appear to 

transform into a "herd of cats" without any sort of organized strategy. The developers don't 

know what to make [7]. Project managers don't realise how far a project is being progressed. 

The corporation has no way to determine whether or not the finished result satisfies its 

specifications without a schedule. There are a range of advantages to a formally-defined SDLC 

software development method: For every move a popular vocabulary development teams and 

stakeholders identified contact channels Developers, programmers, company analyzers and 

project management have specific positions and obligations established inputs and outputs 

from step to step a deterministic "fit definition" to validate whether a move is really complete. 

That's a big issue. Quite a critical aspect of the life cycle of software production to keep the 

project on track or to quit working on the project in the worst-case scenarios. Discuss the 

programme in this article growth, software protection and risk control, helping to develop 

Understanding the SDLC definition. 

 

II. DISCUSSION 
 

These measures, from one process to another are (very) approximately the same. They appear 

to be in this order, but they can also be mixed together in a parallel manner. As we will speak 

about later in this discussion, agile strategies appear to "wind all" in a near, fast-repeating loop. 

Any of these steps is normally achieved by waterfall methods. Outputs from one become inputs 

to the following step [8]. 

 

A. Planning: - 



  

 

 

ISSN: 0374-8588 

Volume 21 Issue 8, August 2019 

______________________________________________________________________________ 
 
 

1616 
 

The project and inventory management aspect was discussed in the planning stage. This may 

include:  

1. Allotment of land (both human and materials)  

2. Planning of capabilities  

3. Planning of the project  

4. Estimate of expense  

5. Forecasts. 

Plan schedules, plans, expense estimates and acquisition criteria are the product of the 

preparation process. Ideally, project management and production workers partner with 

operations and security teams to ensure the balance of both views [9]. 

 

B. Requirements: - 

In order to fulfil the current growth and progress needs, the company must connect with IT 

staff. These specifications are collected by company members and subject matter experts 

(SMEs). Archive programmers, production teams and product managers collaborate with small 

to medium-sized companies to track business processes that require software automation. In a 

Waterfall project, the product of this step is normally a paper described as such. In comparison, 

agile methods can create a backlog of tasks [10]. 

 

C. Design and prototyping: - 

Software architects and developers will start developing the software until the specifications 

are known. The design process uses developed product and software creation trends. The 

design process uses Architects should develop and facilitate the reuse and standardization of 

an architectural system such as TOGAF from existing components. To reliably solve 

algorithmic problems, developers use validated architecture patterns. This process can also 

require some fast prototyping systems, also called the spike, to compare the best solutions. This 

phase's performance includes: Plan documentation listing the chosen project trends and 

components. Code provided by spikes used as a development starting point [11]. 

 

D. Software development: - 

The software is being created in this process. The production teams, irrespective of technique, 

can deliver the working applications as quickly as possible, depending on the approach, this 

process may be achieved in time boxed "sprints" (Agile) or can continue as one effort block 

(Waterfall). Stakeholders in the company should be regularly active in order to ensure that 

needs are fulfilled. The performance is a working programme that can be evaluated [12]. 

 



  

 

 

ISSN: 0374-8588 

Volume 21 Issue 8, August 2019 

______________________________________________________________________________ 
 
 

1617 
 

E. Testing: - 

One of the most critical research phases is potentially the SDLC. Quality applications cannot 

be delivered without checking. To assess consistency, there are a large number of tests 

necessary:  

1. Efficiency of code  

2. Checking of the machine (functional tests)  

3. Checking of incorporation  

4. Checking efficiency  

5. Checking for protection  

 

Automation is the perfect way to guarantee daily training and never miss it for ease. Continuous 

integration tools such as code ship will simplify checks. Functional applications available for 

use in a manufacturing environment is the result of the testing process. 

 

F. Deployment: - 

Ideally, the development process is highly automated. This process is almost invisible in 

established enterprises; software is implemented as soon as it is ready. The procedure requires 

some manual approvals for businesses with lower maturity or for heavily regulated sectors. 

However, it is better to automate the operation itself in a continuous deployment model, even 

in such situations. Application Release Automation tools (ARA) are used to simplify 

application implementation in production environments in large and medium-sized businesses. 

Continuous integration tools are usually combined with ARA programmes. The consequence 

of this process is the release to the working process. 

 

G. Operations and maintenance: - 

The "end of the beginning," so to speak, is the operations and maintenance level. This is not 

the end of the Life Cycle app growth. In order to ensure proper service, applications must be 

checked continuously. Bugs and flaws found in the manufacturing process must be monitoring 

and listening to. Bug fixes may not flow across the loop so at least an abbreviated procedure is 

required to make sure that no other problem (called a regression) is added. 

 

III. CONCLUSION 
 

Dependent procedure including incident management, release administration and control of 

configuration may be tracked in the maintenance area and progress development. Further 

mapping with the technique between the stages of SDLC could be seen. The stages of 

specification and requirement (SDLC) are the combined defence yields the highest return. This 



  

 

 

ISSN: 0374-8588 

Volume 21 Issue 8, August 2019 

______________________________________________________________________________ 
 
 

1618 
 

article has attempted to connect the danger of software and in the individual strings, programme 

stability. The method will allow you to pick the most appropriate ideas for risk control to offer 

app protection. 

 

IV. REFERENCES 

[1] W. Scacchi, “Process Models in Software Engineering,” in Encyclopedia of Software 

Engineering, 2002. 

[2] S. L. Models, “Object-Oriented and Classical Software Engineering LIFE-CYCLE,” 

Development. 2010, doi: 10.1036/0072554509. 

[3] Tutorial.com, “Software Development Life Cycle (SDLC),” Softw. Dev. Life Cycle, 

2014. 

[4] K. Pimparkhede, “Software Development Life Cycle,” in Computer Programming with 

C++, 2018. 

[5] ISO/IEC 12207:2008, Systems and software engineering — Software life cycle 

processes. 2008. 

[6] P. S. Ganney, S. Pisharody, and E. Claridge, “Software Engineering,” in Clinical 

Engineering: A Handbook for Clinical and Biomedical Engineers, 2013. 

[7] V. Rastogi, “Software Development Life Cycle Models- Comparison , Consequences,” 

Int. J. Comput. Sci. Inf. Technol., 2015. 

[8] S. Maheshwari and C. Jain, “A Comparative Analysis of Different types of Models in 

Software Development Life Cycle,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2012. 

[9] V. Walbot and M. M. S. Evans, “Unique features of the plant life cycle and their 

consequences,” Nature Reviews Genetics. 2003, doi: 10.1038/nrg1064. 

[10] A. Mishra and D. Dubey, “A Comparative Study of Different Software Development 

Life Cycle Models in Different Scenarios,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., 

2013. 

[11] V. T. Rajlich and K. H. Bennett, “Staged model for the software life cycle,” Computer 

(Long. Beach. Calif)., 2000, doi: 10.1109/2.869374. 

[12] M. E. Khan and F. Khan, “Importance of Software Testing in Software Development 

Life Cycle,” Int. J. Comput. Sci., 2014. 

 


